PSICROMETRIA

Maria Laura Luz - 2019

Este material foi produzido baseado principalmente a partir de uma apostila publicada por José Antônio Marques Pereira – Eng. de Alimentos e Daniel Marçal de Queiroz – Eng. Agrícola, da Universidade Federal de Viçosa em parceria com o CENTREINAR – Centro Nacional de Treinamento em Armazenagem, em 1986, adaptado e ampliado pela Profa. Maria Laura Luz em outubro de 2019.

PSICROMETRIA

INTRODUÇÃO

O estudo detalhado da mistura ar seco-vapor d'água é de tal importância que constitui uma ciência à parte, a Psicrometria, dotada de vocabulário próprio.

Psicrometria é definida como "o ramo da Física relacionado com a medida ou determinação das condições atmosféricas, particularmente com respeito à mistura ar seco-vapor d'água", ou ainda, "aquela parte da ciência que está de certa forma intimamente preocupada com as propriedades termodinâmicas do ar úmido".

As propriedades termodinâmicas da mistura ar seco-vapor d'água é de grande interesse para o setor de pós-colheita de produtos agrícolas, devido ao efeito da umidade do ar atmosférico no teor de umidade desses produtos.

Na preservação e armazenagem de produtos agrícolas utilizam-se diversas práticas com implicações diretas de psicrometria. O processo de secagem é uma dessas práticas. Na secagem em baixa temperatura, particularmente, a taxa de secagem depende da capacidade do ar em evaporar umidade (potencial de secagem), que é determinado pelas condições psicrométricas do ar: temperatura e umidade relativa. Quando o produto seco é armazenado, o processo de aeração, que é limitado pelas condições psicrométricas do ar, previne a deterioração do produto.

Um dos conceitos mais importantes em secagem e armazenagem é o de teor de umidade de equilíbrio. Esta é a expressão para a troca recíproca de umidade entre materiais higroscópicos, tal como os grãos e o ar que o circunda; a condição de troca recíproca de umidade indica o equilíbrio entre o ar e o material. O equilíbrio é estabelecido quando a pressão de vapor correspondente à umidade do produto se iguala à pressão de vapor da umidade presente no ar, para uma condição fixa de temperatura. Portanto, nos estudos de higroscopia é de fundamental importância as propriedades termodinâmicas do ar úmido.

O conforto térmico apresentado por um ambiente, às vezes, depende mais da quantidade de vapor presente no ar do que propriamente da temperatura. Assim é que, os condicionadores de ar promovem o controle da umidade e apenas pequenas variações na temperatura do recinto.

O conhecimento das condições de umidade e temperatura do ar é de grande importância, também, em muitos outros ramos da atividade humana. A conservação de produtos tais como frutas, hortaliças, ovos e carnes, em câmaras frigoríficas, depende da manutenção de umidade relativa adequada no ambiente. A perda de peso depende da umidade do ar na câmara de estocagem; se a umidade é baixa a perda de peso é elevada, e vice-versa.

AR ATMOSFÉRICO

Em função de suas dimensões e dos processos físico-químicos e biológicos que se desenvolveram no Planeta Terra a camada gasosa que

constitui a atmosfera. Essa massa gasosa que constitui a atmosfera terrestre é essencial às formas de vida que nela existem.

O ar atmosférico é constituído de uma mistura de gases, assim como de vapor d'água, e uma mistura de contaminantes tais como: fumaça, poeira e outros contaminantes gasosos não presentes, normalmente, no ar, em lugares distantes de fontes poluidoras.

Por definição, o ar seco existe quando todo o vapor d'água e contaminantes são removidos do ar atmosférico. Extensivas medições têm mostrado que a composição do ar seco é relativamente constante, mas pequenas variações na quantidade de componentes ocorrem com o tempo, localização geográfica e altitude. A composição percentual em volume ou número de moles por 100 moles do ar seco é dada na Tabela 1.

Tabela 1 – Composição do ar seco

Substância	Fórmula	Massa molecular (kg.kmol ⁻¹)	Porcentagem em volume (moles/100 moles)
Nitrogênio	N_2	28,016	78,084
Oxigênio	O_2	32,000	20,9496
Argônio	Ar	39,948	0,934
Dióxido de carbono	CO_2	44,010	0,0314
Neônio	Ne	20,183	0,001818
Hélio	He	4,0026	0,000524
Metano	CH ₄	16,03188	0,0002
Dióxido de enxofre	SO_2	64,064	0,0001
Hidrogênio	H_2	2,01594	0,00005
Criptônio	Kr	83,80	0,0002
Ozônio	O ₃	48,000	0,0002
Xenônio	Xe	131,3	0,0002

Fonte: ASHRAE, 1977.

A massa molecular aparente do ar seco é 28,9645 kmol e a do vapor d'água é de 18,01535 kmol, ambas na escala do carbono 12 (ASHRAE, 1977). O ar seco normalmente tem vapor d'água associado, o que dá origem ao que é denominado de ar úmido, que é uma mistura binária de ar seco-vapor d'água. A quantidade de vapor d'água presente na mistura pode variar de zero até um valor correspondente à condição de saturação. Isto corresponde à quantidade máxima de vapor d'água que o ar pode suportar em determinada condição de temperatura.

PROPRIEDADES TERMODINÂMICAS DO AR ÚMIDO

Diversas propriedades termodinâmicas fundamentais estão associadas com as propriedades do ar úmido. Duas propriedades independentes, além da pressão atmosférica, são necessárias para estabelecer o estado termodinâmico do ar úmido.

Três propriedades estão associadas com a temperatura:

- a) temperatura do bulbo seco;
- b) temperatura termodinâmica do bulbo úmido;
- c) temperatura do ponto de orvalho.

Algumas propriedades termodinâmicas caracterizam a quantidade de vapor d'água presente no ar úmido:

- d) pressão de vapor;
- e) razão de mistura;
- f) umidade relativa;
- g) grau de saturação.

Outras propriedades de fundamental importância que estão relacionadas com o volume ocupado pelo ar e com a energia do ar, respectivamente, são:

- h) volume específico;
- i) entalpia.

As propriedades entalpia e volume específico são propriedades da mistura ar seco-vapor d'água, mas, por conveniência, são expressas com base em uma unidade de massa de ar seco.

A temperatura psicrométrica do bulbo úmido, t_{bu}, não é uma propriedade termodinâmica da mistura do ar seco-vapor d'água, e será trata à parte.

Apresenta-se, a seguir, uma breve descrição de cada propriedade.

Temperatura de bulbo seco

A temperatura de bulbo seco, t_{bs} , é a verdadeira temperatura do ar úmido, e, frequentemente, é denominada apenas de temperatura do ar; é a temperatura do ar assinalada por um termômetro ordinário.

Temperatura termodinâmica de bulbo úmido

A temperatura termodinâmica do bulbo úmido, t_{bu}, é a temperatura de equilíbrio alcançada quando a mistura ar seco-vapor d'água sofre um processo de resfriamento adiabático (isentálpico) até chegar à saturação.

Temperatura do ponto de orvalho

A temperatura do ponto de orvalho, t_{po}, é a temperatura em que o ar úmido não saturado torna-se saturado, ou seja, quando o vapor d'água começa a condensar-se, por um processo de resfriamento a pressão e razão de mistura constantes.

Pressão de vapor

A pressão de vapor, p_v, é a pressão parcial exercida pelas moléculas de vapor d'água presentes no ar úmido. Quando o ar está totalmente saturado de vapor d'água, sua pressão de vapor é denominada de pressão de vapor saturado, p_s.

Razão de mistura

Razão de mistura, RM, ou razão de umidade do ar é definida como a razão entre a massa de vapor d'água e a massa de ar seco em um dado volume da mistura, cuja unidade usual é kg de vapor d'água/kg de ar seco. Alguns autores confundem os termos razão de mistura e umidade absoluta. Umidade absoluta, também denominada massa específica do vapor d'água,

também erroneamente chamada de densidade do ar, é a razão de massa de vapor d'água para o volume ocupado pela mistura ar seco-vapor d'água, cuja unidade é kg de água/m³ de ar. Obs. A densidade de qualquer substância é adimensional uma vez que divide duas grandezas de mesmas unidades.

Umidade relativa

Define-se umidade relativa do ar, UR, como a razão entre a pressão de vapor d'água atual, p_v, e a pressão de vapor d'água quando o ar se encontra saturado de umidade, p_s, à mesma temperatura. A umidade relativa pode ser expressa em decimal ou porcentagem.

Grau de saturação

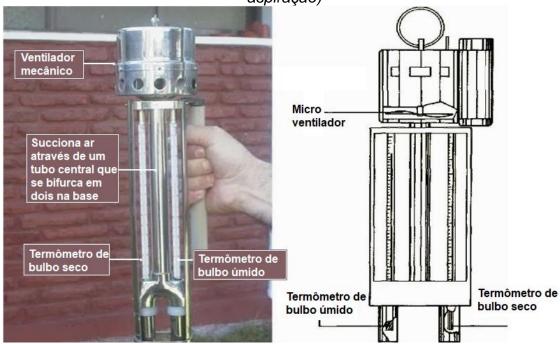
Grau de saturação, μ , é a relação entre a razão de mistura atual da mistura, RM, e a razão de mistura do ar na condição de saturação, RMs, à mesma temperatura e pressão atmosférica.

Entalpia

A entalpia da mistura ar seco-vapor d'água, H, é a energia do ar úmido por unidade de massa de ar seco, acima de uma temperatura de referência; visto que somente diferenças de entalpia são de interesse prático em engenharia, o valor escolhido para a temperatura de referência torna-se irrelevante. As unidades usuais para entalpia são: kcal/kg de ar seco e kJ/kg de ar seco, sendo 1 kcal = 4,186 kJ. O calor é representado pela entalpia, uma vez que Q = Δ H = m. cp. Δ t = Δ U + W quando a pressão é constante, que é o caso de cada carta psicrométrica individual, que é confeccionada para uma determinada pressão atmosférica constante. Obs.: m = massa; cp = calor específico a pressão constante e Δ t = diferença de temperatura; Δ U = variação da energia interna; W = trabalho.

Volume específico

O volume específico do ar úmido, v_s , é definido como o volume ocupado pela mistura ar seco-vapor d'água por unidade de massa de ar seco, cuja unidade é m^3/kg ar seco. A massa específica do ar úmido não é igual ao recíproco do seu volume específico. A massa específica do ar úmido é a razão entre a massa total da mistura e o volume ocupado pela mesma. Obs.: massa específica = kg de ar úmido/ m^3 .


TEMPERATURA PSICROMÉTRICA DO BULBO ÚMIDO

Um psicrômetro (ou termo-higrômetro), Figura 1, consta de dois termômetros, sendo um deles envolto por um tecido constantemente umedecido (termômetro de bulbo úmido) e outro ao lado, simplesmente em equilíbrio térmico com o ar úmido (termômetro de bulbo seco). O termômetro de bulbo úmido recebe sobre si um fluxo de ar constante por meio de um sistema de ventilação. Em função disto, umidade é evaporada, retirando energia do bulbo úmido. A temperatura do bulbo baixará e, quando o estado de

equilíbrio for atingido, se estabilizará. A temperatura registrada pelo termômetro nestas condições é denominada de temperatura psicrométrica do bulbo úmido.

A Figura 2 mostra um termo-higrômetro analógico que acompanha uma tabela de correção e embora não tenha nenhuma ventilação, apresenta diferença psicrométrica devido à evaporação natural da água do tecido que envolve o bulbo. A diferença psicrométrica só não se verificará na condição de saturação do ar úmido (UR = 100%), quando os dois termômetros marcarão a mesma temperatura.

Figura 1 – Psicrômetro com sistema de aspiração de ar (psicrômetro de aspiração)

Fonte: Adaptado de Improve your work, 2013.

Figura 2-Termo-higrômetro analógico

Fonte: Incoterm, 2019.

Entende-se por estado de equilíbrio a situação na qual o fluxo de energia do ar para o bulbo do termômetro é igual à energia necessária para a evaporação da umidade. Nesta condição de equilíbrio, a partir de um balanço de energia, pode-se escrever a seguinte equação:

$$p_v = p_{s,bu} - a_1 \cdot p_0 (t_{bs} - t_{bu})$$

em que:

p_v = pressão parcial do vapor d'água, em N.m⁻²

p_{s,bu} = pressão parcial do vapor d'água na saturação à temperatura do bulbo úmido (t_{bu}), em N.m⁻²

p₀ = pressão barométrica (pressão total do ar úmido), em N.m⁻²

a₁ é denominada de constante psicrométrica, e que depende da temperatura, geometria do bulbo do termômetro e velocidade do ar.

Valores para a constante psicrométrica foram determinados empiricamente por vários pesquisadores, com os seguintes resultados:

a₁ = 0,000662 °C⁻¹ – para psicrômetros com sistema de movimentação de ar (aspiração), tipo ASSMANN, sendo a velocidade do ar maior que 3 m.s⁻¹.

a₁ = 0,000800 °C⁻¹ – para psicrômetros sem aspiração do ar, instalado em um abrigo meteorológico, onde a velocidade do ar é em torno de 1 m.s⁻¹.

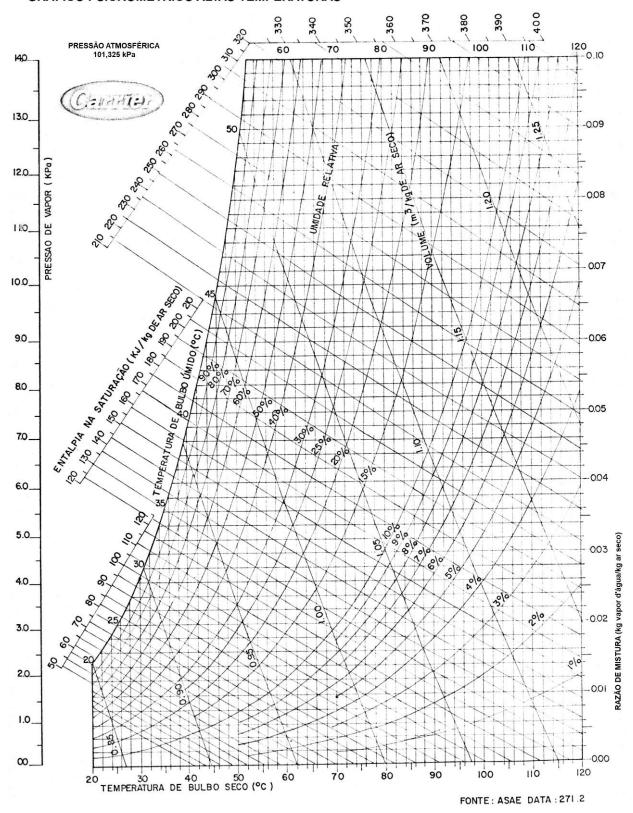
a₁ = 0,00120 °C⁻¹ – para psicrômetros não ventilados, isto é, ar sem movimento (em repouso).

GRÁFICO PSICROMÉTRICO

As propriedades termodinâmicas da mistura ar seco-vapor d'água que constituem o ar atmosférico podem ser convenientemente apresentadas em forma de gráfico, denominada de *gráfico psicrométrico*. Este gráfico é constituído para uma determinada pressão atmosférica, embora às vezes existam curvas de correção disponíveis para outras pressões.

Existem diferentes gráficos psicrométricos em uso. Os gráficos diferem com respeito á pressão barométrica, à faixa de temperatura, o número de propriedades incluídas, a escolha das coordenadas e temperatura de referência para a entalpia. O mais usado nas Américas é aquele na qual a razão de mistura e/ou pressão de vapor, que é uma das coordenadas, e traçado "versus" temperatura de bulbo seco, sendo que a outra coordenada escolhida para construção (coordenada oblígua) é a entalpia. Na Europa, entretanto, o gráfico Mollier, com a razão de mistura e a entalpia como coordenadas, tem sido usado. Nas Figuras 3 e 4 são mostrados gráficos para temperaturas normais psicrométricos e temperaturas elevadas. construídos para a pressão atmosférica normal. No Apêndice são apresentados gráficos para pressões atmosféricas menores que a normal. Num gráfico psicrométrico, escolhidas as coordenadas, as demais propriedades aparecem como parâmetros. Duas propriedades independentes, quaisquer, inclusive a temperatura psicrométrica do bulbo úmido, fixam a condição da mistura (ponto de estado).

Figura 3 – Gráfico psicrométrico para temperaturas normais RAZÃO DE MISTURA (kg vapor d'água/kg ar seco) 550,033 0025 0,020 0,015 0,030 0,010 0,005 0 145 140 50 50 135 45 VOLUME ESPECIFICO (m3/kg DE AR SECO) 130 125 120 06 51, 01, 50, 00, 56 (10 15 20 25 CO (10 CO) (10 CO 06 82 08 PRESSÃO ATMOSFÉRICA: 101, 325 kPa 32 30 GRÁFICO PSICOMÉTRICO TEMPERATURAS NORMAIS 52 50 SI 01-PRESSÃO DE VAPOR (KPO) 70 0,


20

30

4,0

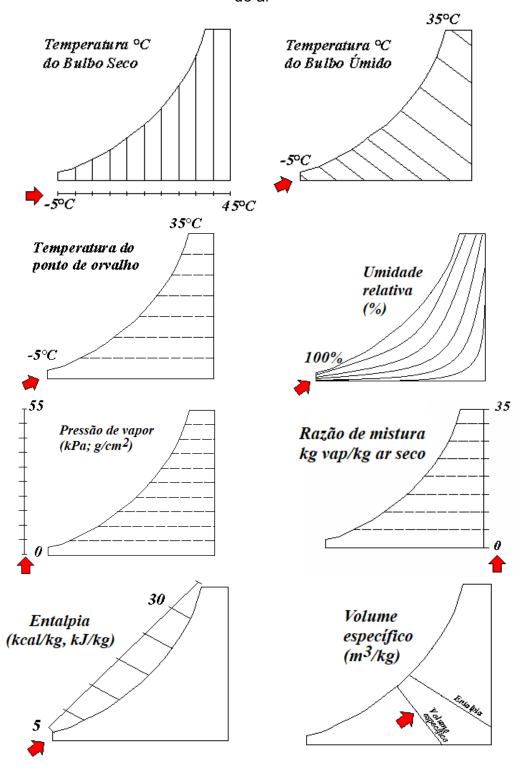

Figura 4 – Gráfico psicrométrico para altas temperaturas

GRÁFICO PSICROMÉTRICO ALTAS TEMPERATURAS

Na Figura 5 estão mostradas, de forma esquemática, as linhas que representam as propriedades termodinâmicas do ar úmido no gráfico psicrométrico.

Figura 5 – Gráficos psicrométricos representando as linhas das propriedades do ar

Fonte: Luz, 2008.

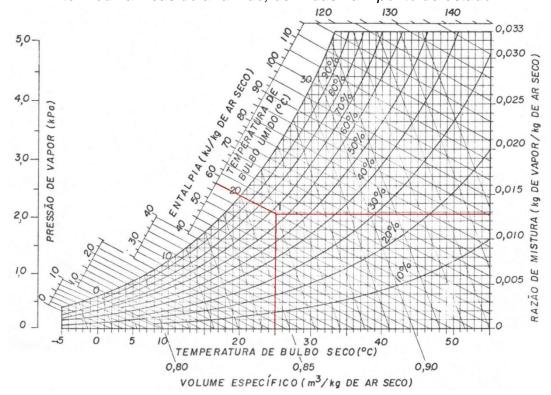
Determinação das propriedades num ponto de estado

Suponha que se determinou por meio de um psicrômetro ventilado a temperatura do bulbo seco, 25°C, e a temperatura do bulbo úmido, 20°C, para a pressão barométrica de 101325 Pa. Através do gráfico psicrométrico podem ser determinadas as demais propriedades termodinâmicas do ar úmido. Na Tabela 2 são mostrados os valores das propriedades do ar úmido, definidas nesse ponto de estado, obtidas do gráfico psicrométrico mostrado na Figura 6, onde está representado o referido ponto de estado.

A seguir, como complementação dos conhecimentos, foram determinadas as propriedades termodinâmicas do ar em outros pontos:

Ponto 2: $t_{bs} = 26^{\circ}C$; $t_{bu} = 19^{\circ}C$;

Ponto 3: $t_{bs} = 22^{\circ}C$; UR = 55%;


Ponto 4: $t_{bs} = 15^{\circ}C$; $t_{po} = 14^{\circ}C$;

Ponto 5: $t_{bs} = 23^{\circ}C$; $t_{bu} = 19^{\circ}C$;

Tabela 2 – Propriedades termodinâmicas do ar úmido definidas em pontos de estado para a pressão barométrica de 101.325 Pa

Ponto de estado	t _{bs} (°C)	t _{bu} (°C)	t _{po} (°C)	p _v (kPa)	UR (%)	v _s (m³/kg)	RM (kg/kg)	H (kJ/kg)
1	25	20	17,7	2,1	64	0,860	0,0127	57,5
2	26	19	15,5	1,75	52	0,861	0,011	59
3	22	16	12,5	1,5	55	0,848	0,009	45
4	15	14,2	14	1,6	93	0,829	0,010	40
5	23	19	17	2,0	69	0,855	0,0121	59

Figura 6 – Gráfico psicrométrico com representação de propriedades termodinâmicas do ar úmido, definidas num ponto de estado

Quando se fornece energia ao ar, a temperatura aumenta, mas a razão de mistura permanece constante, pois não há aumento ou diminuição na quantidade de massa da mistura (ar seco-vapor d'água). O mesmo acontece no resfriamento do ar; energia é retirada e a razão de mistura permanece constante. Portanto, os processos de aquecimento e resfriamento são representados no gráfico psicrométrico como linhas horizontais, paralelas à abscissa, a partir do ponto de estado em que se encontra o ar. Na Figura 7, o ar com as propriedades termodinâmicas no ponto de estado definido por $t_{\rm bs}$ = 25°C e $t_{\rm bu}$ = 2°C sofre, primeiramente, um processo de aquecimento até a temperatura de $t_{\rm bs}$ = 46°C e, num outro processo, sofre resfriamento até a temperatura $t_{\rm bs}$ = 20°C. Na Tabela 3 estão mostrados os valores das propriedades do ar no final dos processos de aquecimento e de resfriamento assinalados no gráfico psicrométrico (Figura 7).

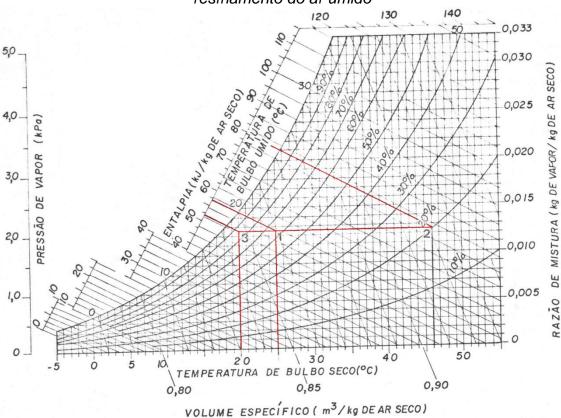
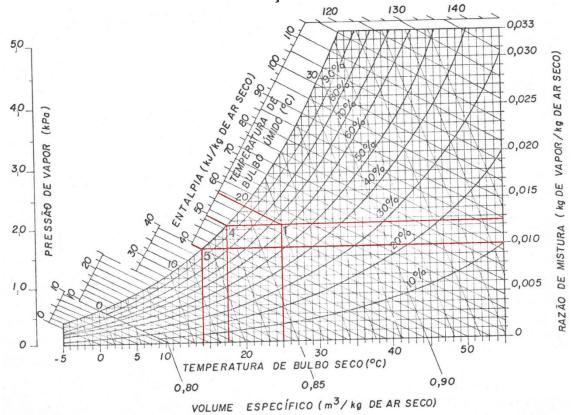


Figura 7 – Gráfico psicrométrico com representação de aquecimento e resfriamento do ar úmido

No processo de aquecimento, a entalpia do ar variou de $H_1 = 57,5$ kJ/kg de ar seco até $H_2 = 80,0$ kJ/kg de ar seco; isto significa que é necessário fornecer 22,5 kJ/kg de ar seco para levar a massa de ar do ponto de estado 1 para o ponto de estado 2. No processo de refrigeração, é necessário retirar 5 kJ/kg de ar seco para levar o ar do ponto de estado 1 ao ponto de estado 3.

Tabela 3 – Propriedades termodinâmicas do ar nos processos de aquecimento e resfriamento sensível


	Aquec	imento	Resfria	amento			
Propriedade	Ponto d	e estado	Ponto de estado				
-	1	2	1	3			
t _{bs}	25,0	46,0	25,0	20,0			
t bu	20,0	26,0	20,0	18,6			
UR	65,0	20,0	65,0	87,0			
p_{v}	2,1	2,1	2,1	2,1			
ŘМ	0,0127	0,0127	0,0127	0,0127			
Н	57,5	80,0	57,5	52,5			
Vs	0,86	0,922	0,86	0,847			
t_po	17,7	17,7	17,7	17,7			

Resfriamento com desumidificação

Na refrigeração do ar, quando se atinge a curva de saturação (umidade relativa máxima = 100%), tem-se o ponto de orvalho. O resfriamento adicional deste ar moverá o ponto de estado sobre a linha de saturação, ocorrendo condensação de parte do vapor d'água presente no ar, e, consequentemente, a razão de mistura irá diminuir.

Na Figura 8 mostra-se o resfriamento de uma massa de ar com as propriedades termodinâmicas definidas no ponto de estado $t_{bs} = 25^{\circ}\text{C}$ e $t_{bu} = 20^{\circ}\text{C}$ (ponto 1) até o ponto 4.

Figura 8 – Gráfico psicrométrico com representação do resfriamento com desumidificação do ar úmido

Nota-se que o ponto de estado se desloca horizontalmente para a esquerda, até atingir a linha de saturação, indicando que foi atingido o ponto de orvalho (ponto 4). Se o resfriamento continuar até a temperatura de $t_{bs} = 14^{\circ}\text{C}$ (ponto 5) ocorrerá a condensação de 0,0027 kg de vapor por kg de ar seco, e a entalpia do ar diminuirá de 18,5 kJ por kg de ar seco. Na Tabela 4 constam os valores das propriedades termodinâmicas do ar para o processo anteriormente descrito.

Tabela 4 – Propriedades termodinâmicas do ar no processo de resfriamento com desumidificação

Propriedade		Ponto de estado	
•	1	4	5
t _{bs}	25,0	17,7	14,0
t bu	20,0	17,7	14,0
UR	65,0	100	100
p_{v}	2,1	2,1	1,6
RM	0,0127	0,0127	0,010
Н	57,5	50,0	39,0
Vs	0,86	0,84	0,827
t_po	17,7	17,7	14,0

Secagem e umidificação adiabática do ar

A adição ou retirada de umidade do ar, sem que se acrescente ou retire energia, faz com que o ponto de estado se mova sobre uma linha de entalpia constante. No caso de adição de umidade, o ponto se desloca para cima, e no caso de retirada de umidade, o ponto se desloca para baixo. A Figura 9 mostra que o ar úmido nas condições iniciais (ponto de estado 1) apresenta temperatura de bulbo seco t_{bs} = 25°C e razão de mistura de 0,0127 kg de vapor/kg de ar seco. Ao se acrescentar 0,0013 kg de vapor d'água, o ponto de estado se desloca para o ponto 6 (RM = 0,014 kg/kg). Partindo-se novamente das condições iniciais (ponto de estado 1) ao se retirar 0,0017 kg de vapor d'água, o ponto de estado se desloca para o ponto 7 (RM = 0,011 kg/kg). Notase que a entalpia do ar permanece constante em 53,5 kJ/kg de ar seco. Na Tabela 5 apresentam-se as propriedades termodinâmicas do ar nos pontos 1, 6 e 7.

Tabela 5 – Propriedades termodinâmicas do ar nos processos de secagem e umidificação adiabática

Propriedade	Resfrian	nento com desumio Ponto de estado	dificação				
•	1	6	_				
t _{bs}	25,0	22,0	29,2				
t bu	20,0	20,0	20,0				
UR	65,0	85,0	43,0				
p_{v}	2,1	2,3	1,8				
ŔМ	0,0127	0,014	0,011				
Н	57,5	57,5	57,5				
Vs	0,86	0,854	0,87				
t_po	17,7	19,0	15,5				

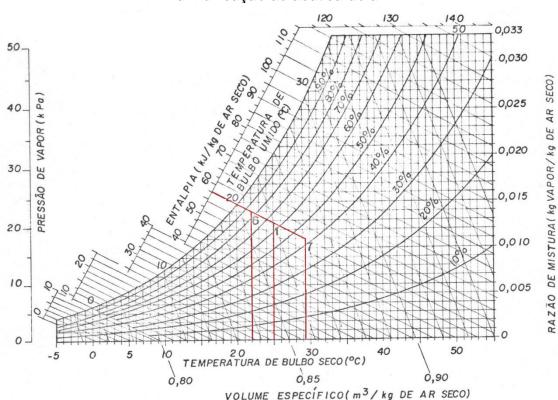


Figura 9 – Gráfico psicrométrico com representação da secagem e umidificação adiabática do ar

O processo de aquecimento, resfriamento, secagem e umidificação do ar são particularmente importantes nos trabalhos de manuseio, secagem e armazenamento de produtos biológicos.

Umidade relativa e déficit de pressão de vapor

A medida da umidade relativa do ar pode ser obtida através das temperaturas de bulbo seco e bulbo úmido, medidas com um psicrômetro. A queda de temperatura do bulbo umedecido depende da quantidade de vapor d'água que o ar contém, além da velocidade do ar em torno do tecido embebido em água destilada. O déficit de saturação é encontrado pela diferença entre a pressão de vapor d'água saturada, ps, e a pressão de vapor atual do ar, pv, na temperatura em que se encontra o ar. Quando a temperatura do ar é conhecida, a pressão do vapor d'água saturada, ps, pode ser obtida na Tabela 6, em unidades do SI, ou nas Tabela 7 e 8 em outras unidades.

A pressão de vapor d'água atual, p_v, pode ser calculada pela seguinte equação:

$$p_v = p_{s,bu} - a_1 \cdot p_0 (t_{bs} - t_{bu})$$

sendo que a pressão atmosférica em função da altitude do local é encontrada na Tabela 9. Assim, lembrando que a umidade relativa do ar é dada por:

$$UR = \frac{p_v}{p_s} 100$$

onde: p_v = pressão parcial do vapor d'água, em N.m⁻²

 p_s = pressão parcial do vapor d'água na saturação, em N.m $^{\text{-}2}$

Tabela 6 – Pressão de vapor d'água saturada (kPa), para pressão atmosférica de 101,325 kPa

	40 101,020 Ta G													
t					G	raus								
(°C)	0,0	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0				
0	0,6112	0,6571	0,7060	0,7581	0,8135	0,8725	0,9353	1,0020	1,0729	1,1481				
10	1,2280	1,3128	1,4026	1,4979	1,5987	1,7055	1,8185	1,9380	2,0643	2,1979				
20	2,3389	2,4878	2,6448	2,8105	2,9852	3,1693	3,3633	3,5674	3,7823	4,0084				
30	4,2462	4,4961	4,7586	5,0345	5,3242	5,6280	5,9468	6,2812	6,6315	6,9988				
40	7,3888	7,7866	8,2081	8,6495	9,1110	9,5935	10,0982	10,6250	11,1754	11,7502				
50	12,3503	12,9764	13,6293	14,3108	15,0205	15,7601	16,5311	18,3337	18,1691	19,0393				
60	19,994	20,886	21,865	22,883	23,941	25,040	26,181	27,366	28,597	29,874				
70	31,199	32,573	33,998	35,476	37,006	38,594	40,237	41,939	43,702	45,525				
80	47,414	49,367	51,386	53,475	55,634	57,866	60,173	62,554	65,017	67,558				
90	70,182	72,890	75,685	78,567	81,543	84,609	87,771	91,033	94,394	97,853				
100	101,420	105,095	108,877	112,773	116,782	120,908	125,155	129,524	134,015	138,635				
110	143,390	148,271	153,289	158,447	163,749	169,192	174,786	180,530	186,420	192,476				

Fonte: Van Wylen e Sontag, 1978.

Tabela 7 – Pressão de vapor d'água saturada (mm Hg), para pressão atmosférica de 760 mm Hg

t			aı		Décimos					
(°C)	0,0	0,1	0,2	0,3	0,4	0,5	u 0,6	0,7	0,8	0,9
<u>-5</u>	3,16	3,14	3,11	3,09	3,07	3,04	3,02	3,00	2,98	2,95
-4	3,41	3,38	3,36	3,33	3,31	3,28	3,26	3,23	3,21	3,18
-3	3,67	3,64	3,62	3,59	3,56	3,54	3,51	3,48	3,46	3,46
-2	3,95	3,92	3,89	3,86	3,84	3,81	3,78	3,75	3,72	3,70
-1	4,25	4,22	4,19	4,16	4,13	4,10	4,07	4,04	4,01	3,98
-0	4,57	4,54	4,50	4,47	4,44	4,41	4,37	4,34	4,31	4,28
+0	4,57	4,60	4,64	4,67	4,70	4,74	4,77	4,80	4,84	4,87
1	4,91	4,94	4,98	5,02	5,05	5,09	5,12	5,16	5,20	5,23
2	5,27	5,31	5,35	5,39	5,42	5,46	5,50	5,54	5,58	5,62
3	5,66	5,70	5,74	5,78	5,82	5,86	5,90	5,94	5,99	6,03
4	6,07	6,11	6,15	6,20	6,24	6,28	6,33	6,37	6,42	6,46
5	6,51	6,55	6,60	6,64	6,69	6,74	6,78	6,83	6,88	6,92
6	6,97	7,02	7,07	7,12	7,17	7,22	7,26	7,31	7,36	7,42
7	7,47	7,52	7,57	7,62	7,67	7,72	7,78	7,83	7,88	7,94
8	7,99	8,05	8,10	8,15	8,21	8,27	8,32	8,38	8,43	8,49
9	8,55	8,61	8,66	8,72	8,78	8,84	8,90	8,96	9,02	9,08
10	9,14	9,20	9,26	9,32	9,39	9,45	9,51	9,58	9,64	9,70
11	9,77	9,83	9,90	9,96	10,03	10,09	10,16	10,23	10,30	10,36
12	10,43	10,50	10,57	10,64	10,71	10,78	10,85	10,92	10,99	11,07
13	11,14	11,21	11,28	11,36	11,43	11,50	11,58	11,66	11,73	11,81
14	11,88	11,96	12,04	12,12	12,19	12,27	12,35	12,43	12,51	12,59
15	12,67	12,76	12,84	12,92	13,00	13,09	13,17	13,25	13,34	13,42
16	13,51	13,60	13,68	13,77	13,86	13,95	14,04	14,12	14,21	14,30
17	14,40	14,49	14,58	14,67	14,73	14,86	14,95	15,04	15,14	15,23
18	15,33	15,43	15,52	15,62	15,72	15,82	15,92	16,02	16,12	16,22
19	16,32	16,42	16,52	16,63	16,73	16,83	16,94	17,04	17,15	17,26
20	17,36	17,47	17,58	17,69	17,80	17,91	18,02	18,13	18,24	18,35
21	18,47	18,58	18,69	18,81	18,92	19,04	19,16	19,27	19,39	19,51
22	19,63	19,75	19,87	19,99	20,11	20,24	20,36	20,48	20,61	20,73
23	20,86	20,98	21,11	21,24	21,37	21,50	21,63	21,70	21,89	22,02
24	22,15	22,29	22,42	22,55	22,69	22,83	22,96	23,10	23,24	23,38
25	23,52	23,66	23,80	23,94	24,08	24,24	24,37	24,52	24,66	24,81
26	24,96	25,10	25,25	25,40	25,55	25,70	25,86	26,01	26,16	26,32
27	26,47	26,63	26,78	26,94	27,10	27,26	27,42	27,58	27,74	27,90
28	28,07	28,23	28,39	28,56	28,73	28,89	29,06	29,23	29,40	29,57
29	29,74	29,92	30,09	30,26	30,44	30,62	30,79	30,97	31,15	31,33
30	31,51	31,69	31,87	32,06	32,24	32,43	32,61	32,80	32,99	33,18
31	33,37	33,56	33,75	33,94	34,14	34,33	34,53	34,72	34,92	35,12
32	35,32	35,52	35,72	35,92	36,13	36,33	36,54	36,74	36,95	37,16
33	37,37	37,58	37,79	38,00	38,22	38,43	38,65	38,87	39,08	39,30
34	39,52	38,74	39,97	40,19	40,41	40,64	40,87	41,09	41,32	41,55
35	41,78	42,02	42,25	42,48	42,72	42,96	43,19	43,43	43,67	43,92
36	44,16	44,40	44,65	44,89	45,14	45,39	45,64	45,89	46,14	46,39
37	46,65	46,90	47,16	47,42 50.07	47,68	47,94 50.61	48,20	48,46	48,73	48,99 51.73
38	49,26	49,53	49,80	50,07	50,34	50,61	50,89 53.70	51,16	51,44	51,72 54.57
39 40	52,00 54.87	52,28 55.16	52,56 55,30	52,84 55.75	53,13	53,41	53,70 56,65	53,99 56.05	54,28 57,62	54,57
40 Fantai	54,87	55,16	55,39	55,75	56,05	56,35	56,65	56,95	57,62	57,56

Fonte: Doorembos, 1976.

Tabela 8 – Pressão de vapor d'água saturada (mbar), para pressão atmosférica de 1013 mbar

t				Г	Décimos		11			
(°C)	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
0	6,1	6,2	6,2	6,2	6,3	6,3	6,4	6,4	6,5	6,5
1	6,6	6,6	6,7	6,7	6,8	6,8	6,9	6,9	7,0	7,0
2	7,1	7,1	7,2	7,2	7,3			7,4	7,5	7,5
3	7,6	7,6	7,7	7,7	7,8	7,9	7,4 7,9	8,0	8,0	8,1
4	8,1	8,2	8,2	8,3	8,4	8,4	8,5	8,5	8,6	8,7
5	8,7	8,8	8,8	8,9	9,0	9,0	9,1	9,2	9,2	9,3
6	9,4	9,4	9,5	9,5	9,6	9,7	9,7	9,8	9,9	9,9
7	10,1	10,1	10,2	10,2	10,3	10,4	10,4	10,5	10,6	10,7
8	10,7	10,8	10,9	10,9	11,0	11,1	11,2	11,2	11,3	11,4
9	11,5	10,6	11,6	11,7	11,8	11,9	12,0	12,0	12,1	12,2
10	12,3	12,4	12,4	12,5	12,6	12,7	12,8	12,9	13,0	13,0
11	13,1	13,2	13,3	13,4	13,5	13,6	13,7	13,7	13,8	13,9
12	14,0	14,1	14,2	14,3	14,4	14,5	14,6	14,7	14,8	14,9
13	15,0	15,1	15,2	15,3	15,4	15,5	15,6	15,7	15,8	15,9
14	16,0	16,1	16,2	16,3	16,4	16,5	16,6	16,7	16,8	16,9
15	17,0	17,2	17,3	17,4	17,5	17,6	17,7	17,8	17,9	18,1
16	18,2	18,3	18,4	18,5	18,6	18,8	18,9	19,0	19,1	19,3
17	19,4	19,5	19,6	19,7	19,9	20,0	20,1	20,2	20,4	20,5
18	20,6	20,8	20,9	21,0	21,2	21,3	21,4	21,6	21,7	21,8
19	22,0	22,1	22,2	22,4	22,5	22,7	22,8	22,9	23,1	23,2
20	23,4	23,5	23,7	23,8	24,0	24,1	24,3	24,4	24,6	24,7
21	24,9	25,0	25,2	25,3	25,5	25,6	25,8	26,0	26,1	26,3
22	26,4	26,6	26,8	26,9	27,1	27,3	27,4	27,6	27,8	27,9
23 24	28,1	28,3	28,4	28,6	28,8	29,0	29,1 30,9	29,3	29,5	29,7
2 4 25	29,8 31,7	30,0 31,9	30,2 32,1	30,4 32,2	30,6 32,4	30,7 32,6	30,9 32,8	31,1 33,0	31,3 33,2	31,5 33,4
26	33,6	33,8	34,0	34,2	34,4	34,6	34,8	35,0 35,0	35,2 35,2	35,4 35,4
20 27	35,7	35,8 35,9	36,1	36,3	36,5	36,7	36,9	35,0 37,1	37,4	35, 4 37,6
28	37,8	38,0	38,2	38,5	38,7	38,9	39,1	39,4	39,6	39,8
29	40,1	40,3	40,5	40,8	41,0	41,2	41,5	41,7	42,0	42,2
30	42,2	42,7	42,9	43,2	43,4	43,7	43,9	44,2	44,4	44,7
31	44,9	45,2	45,4	45,7	46,0	46,2	46,5	46,8	47,0	47,3
32	47,6	47,8	48,1	48,4	48,6	48,9	49,2	49,5	49,8	50,0
33	50,3	50,6	50,9	51,2	51,5	51,7	52,0	52,3	52,6	52,9
34	53,2	53,5	53,8	54,1	54,4	54,7	55,0	55,3	55,6	55,9
35	56,2	56,6	56,9	57,2	57,5	57,8	58,1	58,5	58,8	59,1
36	59,4	59,8	60,1	60,4	60,7	61,1	61,4	61,7	62,1	62,4
37	62,8	63,1	53,5	63,8	64,1	64,5	64,8	65,2	65,6	65,9
38	66,3	66,6	67,0	67,4	67,7	68,1	68,5	68,8	69,2	69,5
39	69,9	70,3	70,7	71,1	71,5	71,8	72,2	72,6	73,0	73,4

Fonte: Doorembos, 1976.

Tabela 9 – Pressão barométrica (mbar) para diferentes altitudes

Altitude (m)	0	100	200	300	400	500	600	700	800	900
0	1013	1001	990	978	967	955	944	933	921	901
1000	899	888	877	867	856	845	835	825	816	805
2000	795	785	776	766	757	747	738	729	719	710
3000	701	693	684	676	667	658	650	641	633	624
4000	616	608	600	593	585	577	570	562	555	547
5000	540	533	526	519	512	505	498	492	485	478

Fonte: Doorembos, 1976.

Conversões:

 $1013,25 \text{ mbar} = 101,325 \text{ kPa} = 760 \text{ mm Hg} = 10332,27 \text{ kgf/m}^2 = 1 \text{ atm} = 14,69595 \text{ lbf/pol}^2(PSI)$

Pode-se determinar a umidade relativa do ar em locais em que não se dispõe de gráficos psicrométricos, para a altitude local, ou, ainda, para situações em que não se dispõe de psicrômetros com sistema de movimentação de ar.

A seguir, apresenta-se um caso ilustrativo, em que se quer calcular a umidade relativa do ar a partir das seguintes condições: $t_{bs} = 28^{\circ}\text{C}$, $t_{bu} = 21,5^{\circ}\text{C}$, medidas com psicrômetro sem sistema de movimentação de ar, instalado num abrigo meteorológico. A altitude do local é de 700 metros acima do nível do mar.

- -Para esta altitude, na Tabela 9, a pressão atmosférica tem o valor de p_0 = 933 mbar.
- -Para o referido psicrômetro, a constante psicrométrica tem o valor de a₁=0.000800°C⁻¹.
 - -Na Tabela 8 para $t_{bu} = 21,5^{\circ}C$, tem-se que $p_{s.bu} = 25,6$ mbar.
 - -Na Tabela 8 para $t_{bs} = 28^{\circ}C$, tem-se que $p_{s.bu} = 37.8$ mbar.

Pela equação calcula-se a pressão de vapor:

$$p_V = 25.6 - (0.000800 \times 933) \times (28 - 21.5)$$

 $p_v = 20,75 \text{ mbar}$

Para determinar a umidade relativa do ar:

$$UR = \frac{p_{v}}{p_{s}} 100 = \frac{20,75}{37,8} 100$$

$$UR = 55.0\%$$

Em muitos casos é usual expressar a umidade do ar em termos de umidade relativa, como em situações onde o teor de umidade de um produto biológico é suposto estar em equilíbrio com a umidade e a temperatura do ar após um período de tempo prolongado. Em outros casos, entretanto, onde a taxa na qual algum fenômeno ocorre em decorrência de uma resposta às condições de umidade do ar, esta taxa está muito mais relacionada com o déficit de pressão de vapor do que com a umidade relativa.

Tabela psicrométrica

A Tabela 10 é utilizada na determinação da umidade relativa do ar, quando as temperaturas de bulbo seco, t_{bs}, e de bulbo úmido, t_{bu}, são conhecidas. Essa tabela foi construída para a pressão atmosférica normal (nível do mar).

A Tabela 10 é de dupla entrada, na qual se encontra a temperatura do termômetro de bulbo seco, t_{bs} , na primeira coluna e a diferença psicrométrica ($t_{bs}-t_{bu}$) na primeira linha. Os diversos valores de umidade relativa constituem o corpo da tabela. Assim, como exemplo, para a condição de $t_{bs}=28^{\circ}\text{C}$ e de $t_{bu}=25^{\circ}\text{C}$, encontra-se na primeira coluna o valor correspondente a $t_{bs}=28^{\circ}\text{C}$ (ver na Tabela 10) e, seguindo-se horizontalmente até a coluna cuja diferença psicrométrica é 3°C, o valor de UR = 78% para a umidade relativa do ar, nestas condições.

Equações psicrométricas

Encontram-se disponíveis na literatura equações exatas e termodinamicamente consistentes para a razão de mistura, volume específico, entalpia, grau de saturação e pressão de vapor d'água saturada. Estas equações foram desenvolvidas com base nos conceitos da termodinâmica estatística, levando em consideração as forças intermoleculares que fazem com que o ar atmosférico se comporte como um gás não ideal. Tabelas das propriedades do ar úmido construídas a partir destas equações estão publicadas em ASHRAE (1977).

Devido à complexidade das equações utilizadas na construção dessas tabelas, equações simplificadas, que fornecem resultados que se aproximam bem dos valores reais, foram desenvolvidas com base na suposição que o ar úmido se comporta como um gás ideal. Estas equações simplificadas são usadas normalmente para calcular parâmetros psicrométricos a pressões atmosféricas diferentes daquelas utilizadas para construir as tabelas e gráficos psicrométricos. Estas equações são satisfatórias para a maioria das aplicações em engenharia. Entretanto, para finalidades que exijam resultados exatos, as equações dos gases ideais são de alguma forma limitadas.

A seguir apresentam-se as equações psicrométricas, cujos símbolos estão definidos a seguir. As unidades estão no SI – Sistema Internacional.

Tabela 10 – Tabela psicrométrica para pressão atmosférica normal

	Tabela de umidade relativa (%)																
tar								a psi	crom	étric	a (t _{bs}	$-t_{bu}$	ı)				
	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0	6,5	7,0	7,5	8,0	8,5
10	94	88	82	76	71	65	60	54	49	44	39	34	29	24	19	14	10
11	94	88	82	77 70	72	66	61	56	51	46	41	36	31	27	22	17	13
12 13	94 94	88 89	83 84	78 78	72 73	67 68	62 63	57 59	52 54	48 49	43 45	38 40	34 36	29 31	25 27	20 23	16 19
14	94	89	84	78 79	73 74	69	65	60	55	51	46	42	38	34	29	25 25	21
15	94	89	84	80	75	70	66	61	57	52	48	44	40	36	32	28	24
16	95	90	85	80	76	71	67	62	58	54	50	45	41	37	34	30	26
17	95	90	85	81	76	72	68	63	59	55	51	47	43	39	35	32	28
18	95	90	86	81	77	73	68	64	60	56	52	48	45	41	37	34	30
19	95	90	86	82	77	73	69	65	61	57	54	50	46	42	39	35	32
20	95	91	86	82	78	74	70	66	62	58	55	51	47	44	40	37	34
21	95	91	87	83	79	75	71	67	63	59	56	52	49	45	42	39	35
22	95	91	87	83	79	75	71	68	64	60	57	53	50	47	43	40	37
23	95	91	87	83	80	76	72	68	65	61	58	54	51	48	45	42	38
24	95	91	88	84	80	76 77	73	69	66	62	59	55	52	49	46	43	40
25	96	92	88	84	80	77 77	73	70 70	66	63	60	56	53	50	47	44	41
26	96 96	92 92	88 88	84 95	81 81	77 78	74 74	70 71	67	64 64	61 61	57 58	54 55	51 52	48	45 46	42 44
27 28	96	92	88	85 85	82	78	74 75	72	68 68	64 65	62	59	56	53	49 50	48	44 45
29	96	92	89	85	82	79	75 75	72	69	66	63	60	57	54	51	49	46
30	96	92	89	86	82	79	76	73	69	66	63	61	58	55	52	49	47
31	96	92	89	86	82	79	76	73	70	67	64	61	58	56	53	50	48
32	96	93	89	86	83	80	77	74	71	68	65	62	59	57	54	51	49
33	96	93	89	86	83	80	77	74	71	68	65	63	60	57	55	52	50
34	96	93	90	86	83	80	77	74	71	69	66	63	61	58	55	53	50
35	96	93	90	87	84	81	78	75	72	69	66	64	61	59	56	54	51
36	96	93	90	87	84	81	78	75	72	70	67	64	62	59	57	54	52
37	96	93	90	87	84	81	78	76	73	70	67	65	62	60	57	55	53
38	96	93	90	87	84	81	79 70	76 70	73	71	68	65	63	60	58	56	53
39	96	93	90	87	85	82	79	76	74	71	68	66	63	61	59	56	54
40	96	93	90	88	85 85	82 82	79	77 77	74 74	71 72	69 69	66 67	64	62	59	57	55 55
42	96 97	94 94	91 91	88 88	85 85	82	80 80	77	74 75	72	70	67	64 65	62 63	60 60	58 58	56
43	97	94	91	88	85	83	80	77	75 75	72	70	68	65	63	61	59	56
44	97	94	91	88	86	83	80	78	75	73	70	68	66	64	61	59	57
45	97	94	91	88	86	83	81	78	76	73	71	68	66	64	62	60	58
46	97	94	91	88	86	83	81	78	76	73	71	69	67	64	62	60	58
47	97	94	91	89	86	83	81	79	76	74	71	69	67	65	63	61	59
48	97	94	91	89	86	84	81	79	76	74	72	70	67	65	63	61	59
49	97	94	91	89	86	84	81	79	77	74	72	70	68	66	63	61	59
50	97	94	92	89	86	84	82	79	77	75	72	70	68	66	64	62	60

Tabela gerada a partir de software desenvolvido pelo CENTREINAR

1.Linha de saturação, ps como função de tbs

$$p_s = \exp (31,9602 - \frac{6270,3605}{t_{bs}} - 0,46057 \ln t_{bs})$$

onde: exp = expoente, base dos logaritmos neperianos

$$255,\!38\;K \leq t_{bs} \leq 273,\!16\;K$$

$$p_s = \exp (60,433 - \frac{6834,271}{t_{bs}} - 5,16923 \ln t_{bs}$$

$$273,\!16~K \leq t_{bs} \leq 366,\!5~K$$

$$\ln\left(\frac{p_s}{b_8}\right) = \frac{b_1 + b_2 t_{bs} + b_3 t_{bs}^2 + b_4 t_{bs}^3 + b_5 t_{bs}^4}{b_6 t_{bs} - b_7 t_{bs}^2}$$

$$273,16 \text{ K} \le t_{bs} \le 533,16 \text{ K}$$

em que:

 $b_1 = -27405,526$

 $b_2 = 97,5413$

 $b_3 = 0,146244$

 $b_4 = 0,12558 \times 10^{-3}$

 $b_5 = 0,48502 \times 10^{-7}$

 $b_6 = 4,34903$

 $b_7 = 0.39381 \times 10^{-2}$

 $b_8 = 22105649,25$

2.Umidade relativa, UR

$$UR = \frac{p_v}{p_s} 100$$

3.Razão de mistura, RM

$$RM = 0,62198 \frac{p_{v}}{p_{0} - p_{v}}$$

onde: p₀ = pressão barométrica (pressão total do ar úmido), em N.m⁻²

$$255,38 \text{ K} \le t_{bs} \le 533,16 \text{ K}$$

$$p_v < p_0$$

4. Volume específico, vs

$$v_s = \frac{287,05 \text{ T}}{p_0 - p_v}$$

$$255,38 \text{ K} \le t_{bs} \le 533,16 \text{ K}$$

$$p_v < p_0$$

onde: T é a t_{bs} em Kelvin.

5. Entalpia de sublimação do gelo na saturação, H_s, em J/kg

$$H_s = 2839683,144 - 212,563884 (t_{bs} - 255,38)$$

$$255,38 \text{ K} \le t_{bs} \le 273,16 \text{ K}$$

6.Entalpia de vaporização da água na saturação, H_L, em J/kg

$$\begin{split} H_L &= 2502535,\!259 - 2385,\!75424~(t_{bs} - 273,\!16) \\ &\quad 273,\!16~\textrm{K} \leq t_{bs} \leq 338,\!72~\textrm{K} \\ H_L &= \left(7329155978000 - 15995964,\!08~t_{bs}^2\right)^{\frac{1}{2}} \\ &\quad 338,\!72~\textrm{K} \leq t_{bs} \leq 533,\!16~\textrm{K} \end{split}$$

7.Linha de bulbo úmido, tbu

$$p_{s.bu} - p_v = B (t_{bu} - t_{bs})$$

em que:

$$B = \frac{1006,9254 \left(p_{s,bu} - p_0\right) \left(1 + 0,15577 \frac{p_v}{p_0}\right)}{0,62194 \text{ H}_L^"}$$

Substituindo-se H"_L por H"_s quando t_{bs} < 273,16 K

$$255,38 \text{ K} \le t_{bs} \le 533,16 \text{ K}$$

onde:

H"_L = entalpia de vaporização da água na temperatura do bulbo úmido (J/kg) H"_s = entalpia de sublimação do gelo na temperatura do bulbo úmido (J/kg)

8.Entalpia, H

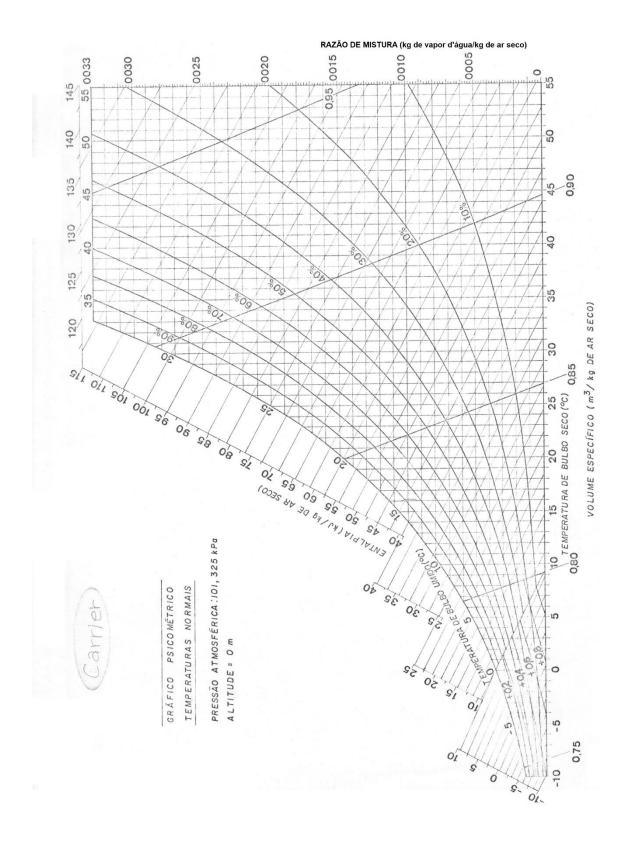
$$\begin{split} \text{H} &= 1006,92540 \; (t_{bs} - \, 273,16) - \text{RM} \, 333432,1 + 2030,5980 \big(273,16 - t_{po} \big) \, + \\ &\quad + \text{H}_s' \; \text{RM} + 1875,6864 \; \text{RM} \; (t_{bs} - t_{po}) \\ &\quad 255,30 \; \text{K} \leq t_{po} \leq 273,16 \; \text{K} \\ \\ \text{H} &= 1006,92540 \; (t_{bs} - \, 273,16) + \, 4186,8 \; \text{RM} \; \big(t_{po} - 273,16 \big) \, + \\ &\quad + \text{H}_L' \; \text{RM} + 1875,6864 \; \text{RM} \; \big(t_{bs} - t_{po} \big) \\ \\ &\quad 273,16 \; \text{K} \leq t_{po} \leq 373,16 \; \text{K} \end{split}$$

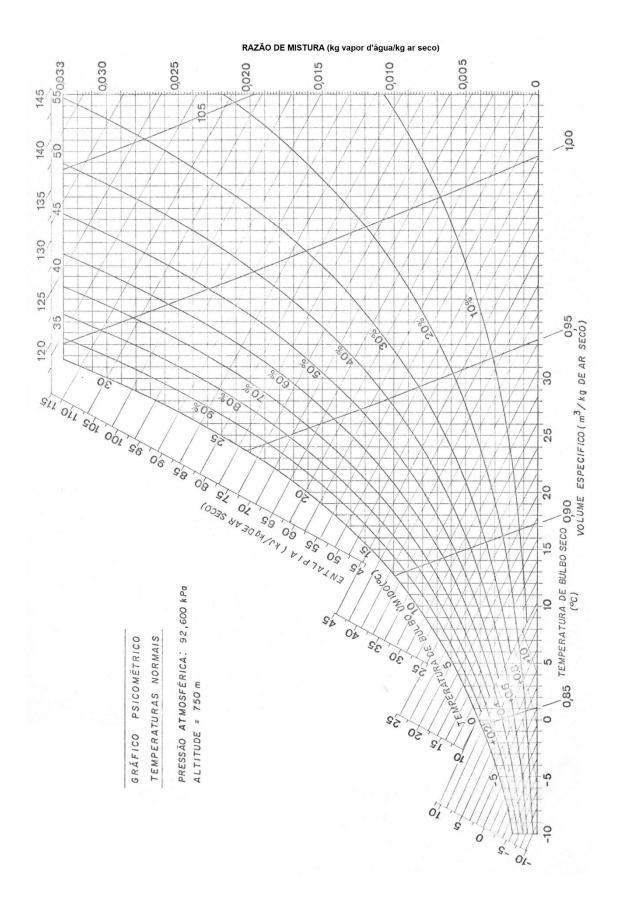
onde:

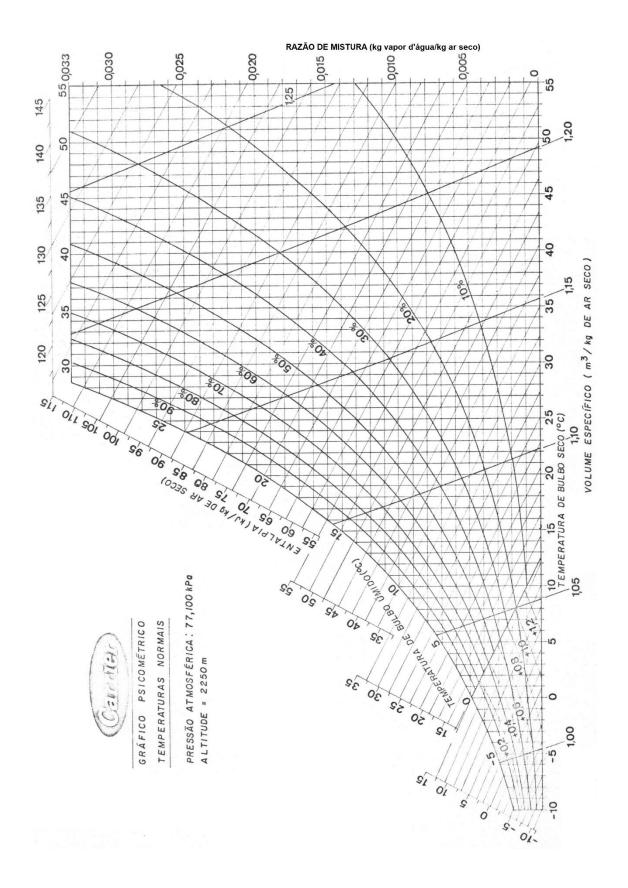
H'_L = entalpia de vaporização da água na temperatura do ponto de orvalho (J/kg)

H's = entalpia de sublimação do gelo na temperatura do ponto de orvalho (J/kg)

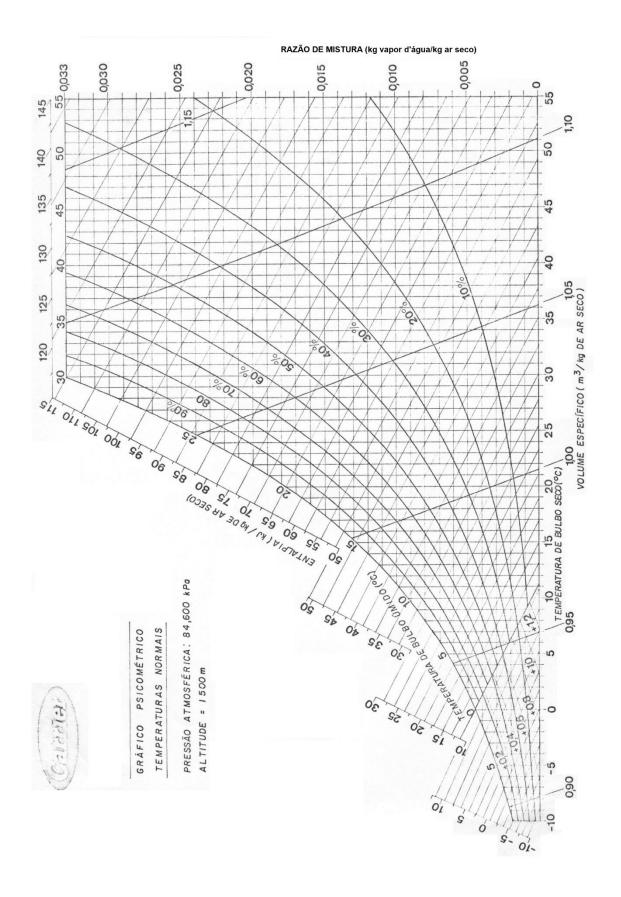
9. Temperatura do ponto de orvalho, tpo


$$t_{po} = c_1 (10^{-3} p_v)^{c_2} + c_3 \ln(10^{-3} p_v) + c_4$$


```
a) para 0.16 \le p_v \le 610.74 \text{ N.m}^{-2}
c_1 = 82.44543
c_2 = 0.1164067
c_3 = 3.056448
c_4 = 196.814270
b) para 610.74 \le p_v \le 101340 \text{ N.m}^{-2}
c_1 = 33.38269
c_2 = 0.2226162
c_3 = 7.156019
c_4 = 246.764110
c) para 101340 \le p_v \le 4688500 \text{ N.m}^{-2}
c_1 = 13.85606
c_2 = 0.2949901
```


 $c_3 = 12,10512$ $c_4 = 263,128720$

Na maioria das vezes, determina-se o valor da temperatura de bulbo seco, juntamente com outro parâmetro psicrométrico, ou seja, temperatura de bulbo úmido, umidade relativa ou temperatura do ponto de orvalho. A partir destas medições pode-se obter uma ou todas as outras propriedades termodinâmicas do ar úmido. As equações apresentadas podem ser usadas para calcular estas propriedades do ar úmido. A ordem na qual são aplicadas depende sobretudo de quais parâmetros são conhecidos.


A seguir, são apresentados alguns gráficos psicrométricos par diferentes condições.

REFERÊNCIAS DOS PIONEIROS NO ASSUNTO

ASAE. ASAE D271.2. **Psychrometric data agricultural engineering book**. American Society of Agricultural Engineers, St. Joseph, Michigan, 1980.

ASHRAE. **Handbook of fundamentals**. Chapter 5, Psychrometries. American Society Heating, Refrigerating, Air Conditioning Engineers. New York, 1977.

BARWICK, A.J.; JORDAN, K.A.; LONGHOUSE, A.D. Accuracy in computer evaluation of moist air properties. **Transactions of the ASAE**, St. Joseph, Michigan, v.10, n.4, p.579-585, 1976.

BROCHU, J.; WILLIANS, G.D.V. Vapor pressure déficit vs. relative humidity for expressing atmospheric moisture content. **Naturaliste Can**., v.96, p.621-636. 1969.

BROOKER, D.B.; BAKKER-ARKEM.W.; HALL, C.W. **Drying cereal grains**. Westport, Connecticut, The AVI Publishing Company, 1974.

BROOKER, D.B. Mathematical model of the psychrometric chart. **Transactions of the ASAE**, St. Joseph, Michigan, v.10, n.4, p.560-563, 1967.

CHAU, K.V. Some new empirical equations for properties of moist air. **Transactions of the ASAE**, St. Joseph, Michigan, v.23, n.5, p.1266-1271, 1980.

DEL GIUDICE, P.M. **Curso intensivo de armazenamento de grãos**. Viçosa: Imprensa Universitária, 1969.

HAZEN, T.E.; CURRY, N.H. Psychrometry in agricultural engineering. **Transactions of the ASAE**, St. Joseph, Michigan, v.11, n.2, p.180-184, 1968.

DOOREMBOS, J. **Agro-meteorological fields stations** – Irrigations and Drainnage paper nº 27. Roma, Food and Agricultural Organization of the United Nations, 1976.

HALASZ, L. **Capítulos da técnica de refrigeração**. Campinas: Fundação Tropical de Pesquisas e Tecnologia, 1980.

HENDERSON, S.M.; PERRY, R.L. Agricultural process engineering. Westport, Connecticut, The AVI Publishing Company, 1979.

PALMATIER, E.P. The psychrometric chart and its aplication. **Transactions of the ASAE**, St. Joseph, Michigan, v.11, n.2, p.181-184, 1968.

LEE, J.F.; SEARS, F.W. Termodinâmica. São Paulo: USP, 1969.

SILVA, J.S.; COELHO, D.T. **Noções de climatologia**. Viçosa: CENTREINAR, 1979.

SILVA, M.B. **Termodinâmica**. São Paulo: McGraw-Hill do Brasil, 1972.

THRELKELD, J.L. **Thermal environmental engineering**. New Jersey: Prentice-Hall, 1962.

NOVA, N.A.V.; OMETO, J.C.; SALATI, E. **Aspectos termodinâmicos da atmosfera.** Piracicaba: Escola Superior de Agricultura Luiz de Queiroz, 1972.

VAN WYLEM, G.J.; SONTAG, R.E. **Fundamentos da termodinâmica clássica**. São Paulo: Edgard Blucher, 197-.

WILHEM, L.R. Numerical calculation of psychrometric properties in SI units. **Transactions of the ASAE**, St. Joseph, Michigan, v.19, n.2, p.318-325, 1976.

WEISS, A. Algorithms for the calculation of moist air properties on a hand calculator. **Transactions of the ASAE**, St. Joseph, Michigan, v.20, n.6, p.1133-1136, 1977.